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Abstract

Let AN be a population with N balls bearing numbers aN1,...,1N

respectively. Draw n balls from A N randomly without replacement, and

denote the numbers appearing on these n baTls by X 1 , ..sXn* Suppose

that *N(xy) be a Borel-measurable function, symmetric in x and y.

"m! Set n  2()- 1 YNX ,,Xk)' ON . '(IX2),g(X1) . (NX,2)'X1)

1<j<k<n o  ,,

ag 2 Var(g(ll)). In this paper we established that, if there exists

.4 fixed constants X and x such that 0 < 1 n/N. i *, then it is

valid for all positive integer n and real x that.

IP(ANne N) _ x) - *(x)I < C n'o03EI#N(Xl.X2) 3(1+[xi) 3

29g

where O(x) is the standard normal distribution function, and C is an

absolute constant depending solely on X and 2"

.-
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* 1. Introduction

Let A be a population of N balls bearing real numbers aNl...,aNN*

Draw n balls from A N randomly without replacement, and denote the numbers

appearing on these n balls by Xl,...,Xn. Suppose that *(x,y) - *N(x,y)

be a two-variable Borel-measurable function which is symmetric in x and

y. Call U , (n-l *(Xjxk)

n 2 (<J<k<1n)

• the finite-population U-statistic with the kernel #. For simplicity and

without losing generality, we can assume that EO(XIX 2) - 0. Define

g(X1 ) = E(,(XI,X 2)1X1 ) and suppose that a 2 Eg2(Xl) > 0.

Nandi and Sen (1963) researched the asymptotic normality of

Un. Zhao Lincheng and Chen Xiru (1985) established the ideal

Berry-Esseen bounds of Un under weaker conditions. Considering the pro-

found results about non-uniform convergence rates of U-statistic, estab-

lished by Zhao Lincheng and Chen Xiru (1983), it is natural to raise such

a problem: whether the analogue is true for finite-population U-statistics.

But this problem will be more difficult, when Xl,...,X n are not independent.

Recently we studied this problem and established the following main

result:

Theorem 1. Suppose that there exist fixed constants X1 and x2 such

that

0 X, < n/N < X2 < 1. (2)

"' , ."," " " " "."." .'- '-Z
°

J.. "" . ' . """. . " . " '. ; . .""" . ;"•" " .*. •" ..p "- .. ' '.".' "o' ..'
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Then there exists an absolute constant C depending only upon i1 and x 2

such that

IP(- gJ Un  < x) - *(x) ho Cn 9o3v 3(1+Ixl) 3  (3)

for every x and n, where v3* EI*(X Ix 2)13 and o(x) is the standard normal

distribution function.

o " " " ' " ." '.4' -,, '' . '' . '. ' " . '' : . ' ' . ' . , '. . ' . " " " . . .. . . . . . . 1 . ,. .. . . . .,
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II. Some Lemmas

To prove the Theorem 1 we must prove some lemmas in this section.

Obviously, we need only to prove the Inequality (3) for large n and all

real x. For convenience, we often omit the index N and the phrase "for

large n". Besides, without losing generality, we can suppose that ag - 1.

Let I(A) denote the indicator of set A,#(A) denote the number of different

elements in set A, and the letter i denote /-7 especially. Last, for

simplicity of presentation, we make the following conventions:

1. In this paper, "absolute constant" means the positive constant

depending only upon A1 and A2, which is independent of n,N,AN, and *, and

can assume different values on each of its appearance even within the same

formula. Throughout this paper, we will use C,C*,C',C,1,i&,c,*, etc. for

some absolute constants, use Ql(ftf), Q2(f.I) and Q3(1*,iti) for some

polynomials with absolute constant coefficients. Further these polynomials

can also take different forms on each of their appearance.

2. Set
::..b,1 o g(a j)/A/, L'N 1Ibi3 .

Let *,(t) and ,2(t) be two functions (which may depend on n) defined

on R . We call *1 - *21 if there exists an absolute constant X such that

Iltij*1(t) - *2(t)fd CNN 3* (4)

In this paper, the following symbols are often used: p - n/N, q - l-p,

(p,q are both dependent on n and N)

d
•

99# r . 4*9 9*
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j g(xX i = g( X r)/p q, Sn l j, Sn = l , Sn = Sn - Sno

where J < n is to be defined. Write

g = g(x ). fjk =0 ( x J -x k ) - j t k9

N-1
"jk = fjk (g+gk) 1 < j t k < n (The j,k's range is the

same in the following). Set

.jk = fjk' (l jkL.)-  fjk = jk " Efjk'

=* E(OfIX * * )- N-1 (g* 1xj), Y k = 'jk j k)N-246- (n)-I Y dY

a= r'2g l<klnjk n. d< "Mkn njk'
*d ~ * *= dn

An =n J<< Y nl = dn  !k<J Y""__n k 1<j kJk

• n k-I *Af 2
= n l = dnJ+ I

. where d = 0 (n /2). Let.

. N-2 . Un
Un Sn nA N-T2r/iu

*. It is obvious that

N N 2 2

J1 j 0, 1 b 1, En, I/N,

ja
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and

1/N < = Ejg(X1) _

E Sn 0 0, Var(Sn) = N/(N-1).

Suppose that {Jl""..'Jk}c{3 4  "...nh. It is easy to see that

E(Y12 1Xj) = 0, for j 1 l,2,...,N, (5)

E(Yl21x1X.'x $x ) - (6)"'" =k "f-T Ylj' 6

E(Y 12 Ixj,....,Xk) 3 (NYk)-I l Ymfor k > 2. (7)"J 1 <t<<k him -

* Lemma 1. For any a > 0 and any n < N, we have

EIS_ C(m).

Proof. We only prove lemma 1 for every even natural number 2k, that

: is EISn 2k _< C(k).

Because n 2k1 rm
E( n nj) 2k = " (20! n)E(l.. n)

J1l ium rl'....rm' 1 m

- here the summation is carried out over all integers rl,...,r satisfying

rl+...+rm = 2k and r, 1, ... 1rm > 1. If some r = 1, for example rm = i,

. then we have
(n r r 1 r 1 im-

()E( r - ) nl .. r

m 1 M 1-M+ m-I i -

.-" from E(nmJn l,...,nml) = - 1 m-l So the contribution of this term
m+l

• * ...... , - -.- ,--.:- -._. . . ,. , , , . -. _.; +.-.-...- ., . ., .-.,,. . ,. . . . , . , . . , .. . .-. . .,. , . . . . - . . . . - . . . . . . . .
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n
to E( I nj3)k can be merged into some sunmmands with the forms

* j=1

m If IE~ _1ml and does not change the orders of magnitude of these
n 2k

summands. Hence in the expansion of E( I ii.) the terms with some r. I
J=1~

* can be omitted, and we get

j~l J m=1

here the summation I" is carried out over all integers r ....,rm satisfying

* 1+.+ 2k and r1 >~ 29 .. m 2. In this case (n), r1l.***rm1  Ck

n 2
so E( In.) - *-C(k), and the lemma is proved from (2).

j-l J --

Lenmma 2. For any n < N, we have

E( Yjk) . Cn EY12 + Cn (EY 12)2

Proof. Write W= I YJk In the expansion of E W 4 we need not take
n lcj<kcn kn

account of those terms, in which some index only appears one time. As an

-example, we consider those terms such as E Y. .l Yj3 YJj YJj . where

*J j1 ...,J5 are different and the index j5 is single. From (6) we have

E(Y. iJY lJYJ Y j3J E{Yl2Yl3 Y24E(Y351X1,X21X3,X4)1

N-42 12~ 13~ 24 3335))
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*Since the number of such terms do not exceed Cn 5, the contributions

of these terms to E W 4 can be merged into the terms with 4 indexes andn

don't change the orders of magnitude of the latter. Using Schwarz's

inequality, we get, for example, 1EY 12Y23Y34Y1  E(Y2 Y) So

S 2 ( 12 ) 23 34 41 12 )*S

E W < Cn EY + Cu4 2( 2 Cn EY + Cn4  2 2

from d n O (n 3 /2 ), the lemmna is proved.

Lemma 3. Without (2) but with the cond'tior 1 4 1 n- and

J/(N-n+l) < X, we have

n 3 < 3 1 3

El I _jl < Cn 3E1Y 121 3 (9)

J n 3 / 3

jul k=J~l jl CX

where CM~ is a constant depending only upon X.

Proof. The proofs of these inequalities are similar, so we only prove

(9). Set
k-l n

k~ jk' n1~ =

then
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EIW I3 =E(& 2IW 1) + E(W 2 11W 1) + 2E(WII

M3 2E{(Vn -11% 1 + %'Wnl nl)I(&nWnl 0)'

+ 2 E{(%Wn _1IW _1I - %W j~j)I (CW _<O),

=2 E(enWn 1 _I I) + 2 E(Il 2 )

From .(6), we have E(t1IX1,....,X~1  n- E(Y. Ix 2 NnlW

so

M3:2 (2 W2 ~ 3
2 E(n-11 ) < 2 E(& IW n~) + 2 EIIn

and

EiW ~ rV n DW~ + (2 E ' 3  EIWnI )y + 2 EIC ni

EIW .nI < - (El~~n) 21 (EIW n 3 11  + E IW .-I +3E~

Set

=n EIW I 3 a =sup EI~kI3

then by above last inequality we obtain

Yn aIy'+y + 3a,

Yn-l. f a 1 Yn-l + Yn2+ 3a,
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So

Yn 9 a2/3 (y 113+y 1/3+ .+y/ 3) + 3na
f n Y n -1 1 2 " " 1)

an-I < an- (Y +y1 /+...+yl/3 + 3na.

Define y = sup Yks then
2<k<n

y 9 na2/3 y1/3 + 3na

From this estimate, we get

3 3/2 3
EIW < Cn sup EIk1

2<k<n

and (9) is obtained from (8).

Lemma 4. Let r and e* be any fixed positive numbers, and J < n. Set

j=1

so {(x1,...,xj): I * > *L1, (12)

then under the condition of the Theorem 1, the following estimate is valid:

P(AjUJ) U < CL2.

* The proof of this lemma is almost the same as lemma 1 of the paper

!,
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Suppose J > Ou0.,N t 
1  1 I - U, ~~' 31912>0 I(,3

Set N*N-J, p =I/N, q . i-p. It is obvious that

p = (n-J)/(N-J) <n/N < X2 < 1.

Let C*> 1, C', V > 0 and'(l . oj~c (1 .N). Define

D N afQ: 1 < j N. JbJ > C LN19 (13)

Gj={1,...qN) Q is..qj11 (14)

N-k" + t*.t) 4 + e lk 9 (15)

(16)

-{(*,t): 1 2C',O4- Itl .1 C"v'M b;11. b* - max lb kI9

2ra ((*,t): 2C')' 1*1 .1vAv5 I C 154 _ _)

r4 t) 2C'Aw~q* 1 . Npq. V /_- b <Itj I C'V/M4 L- 1 1.

In the definition of r1 ... ,r4 , taking off all the "-' we get new

sets of (*,t) and denote these sets by r 19... r4.
Suppose

bj b J/N + b E*L~l for g 0. (17)

t-.........
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Lemma 5. Let positives e and e* be small and C* be large, C', C" be

small enough, and C' > C"C*. Then, when (17) is valid and (*,t)er1U r2U ir3r 4
,

there exist absolute constants C and p such that

3 2 2

,I H 8k(1,,t)I _. C exp(-.l,2+t2)), (18)
*. k Gj-DN .

(1101 < CN'3 exp{-u(* 2+t2 ), when (*,t)er2 U r4  (19)
kGJ'DN'A k(* t)I L6exp{ -( 2+t2 } when (,t)cr 3, (20)

. for N large enough, where set A a {m1,m2,m3,m4 I Is any subset of {1,...,N).

(5]
Proof. The proof of (18) can be referred to the lemma 2 of the paper

From (18) the estimate (19) also be deduced. Now suppose that (*,t)¢, 3 ,

using (18), we get

41011 CL 6 exp{-u(*2+t2 (21)

If some element m of A does not belong to DN9 then

°o~i I;.1 < !(I*R-'11+ltbkl < (2C'A p-- V' +C"p - L-1C*LN/-

< 2C' + "C* .

E2
Taking C small enough, from the inequality 1-cosw m < 1-cosC C /29

we have
>.

.." ~m(,t~2 1 - 25q(l-cos~m) >1 - -2 >1I - 2>0o.

d"c

o4
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Using this inequality and (21) we proved (20).

*Lemaa 6. Suppose (2) is Valid and 0 < VIO< (n-J)/N < v2 N"O for ac[O.J

* and select cand c~appropriately, then there exist A' and P' such that

IE{(Sn)reitn X,**X1 < CN-ra/z2~ S,+~r/~t)

exp{-N -at 21, for r = 0,1.2, (22)

*exp{-jVN-'t 2 11 (23)

provided Iti IL-lr/- and (X, ,....Xj) Ac flBc

Proof. The case of r -0 in (22) can be proved by lema 2 of the paper

In other cases, let X t -aN 19...,J. and write 5"n(q"I fj

Because of the releationship between S" and S", we only need to prove that

nn

N2  I{(1)2 itnI 2(+S' +t2 )exp{-1ut 1,(25)

N3 il C 1 1 1 ... '1 +IS lIIep~p2, (6

IE{(( n ei Sni1 .. ex 11 C(l+NN ep(6

where itl jA ' N

Define SIMp - o( )piNi. It is not difficult to see that
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Ele tnjl$,...,Xj)

1 (+exP{ (tbk/ P7+e)1)ei1e

1 { I k(*-t)exP{'t*/,--d (27)

elpwqB ) I_.P- keGc

from the equality

f Ieikede - 71 for integer k -0,

t O for integer k j 0.

Differentiating both sides of (27), we obtain

.... t

<CTui, j k -- i lId* (28)

I* I <7r AfpwGw j jtk

here we have already used Striling's formula to get the following

estimate:

a'(O) = l+0(N'(l'-)) for aeT0,1] (29)

Take C' and C small enough such that I3kI<l/8 for (*,t)d'1 and

k e Gi. In this case, we have

etwk/6k - + ekwk.

N.
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Here ade _-er. can be assumed different values and t~kt _C. We have

eik ! bk (1+ Okik )I

G 6J'iak G "

e Ck e bkl + C k ibkkI < CI bj I + cI*IN' IbkI + CItI, - kcGj kcGO  -

<~I C~l b I + (,I*I+Itl).-

Thus, it is inferred by (28) and lemia 5 that

T, C{j I1 bitI + 1*1 + ItIlexp(-)I(t +4 )1, for (30)

T, 1 c lbj kIGR ,Jkl j(*I't)l ' j Ibkl. CN Iexp{-u(* 2+t2)1

< C exp{-u(* +t )1, for (*.t)cr2 U r4. (31)

N
Now consider the case (*,t)e13. From I b. = 0, we have

Jul .

I D bjD I 1 1bj I + I Ibjl, (32)

" JCDN N

ij~ l . _ C*'LN1  [ b  < (C*LN)l (33)

Take C' and C" appropriately small such that 1~kl < 1/8. where
kcGJ-DN, then eiwk/5k - 1 + eklikl//-. Using (20), (32) and (33),

we get
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S~ Tbk eik 11 8 + C Ibk " I

•1 keGJ-DN VMk JcG6 kCDN JeGJikJ

1 < J b k R 16JI + cbktkJ H 16j1
kcGiDN ijeG ke J-DN iCG

.'

: + C I. Ibk1 n l6JI
keDN jGjj#k -

C ((I b I + (C*LN) ) + C(l,1+ltl) + (C*LN)1

L LN exp{-u(* 2+t2N

'~~~~ 
22 (4_C(I I=bj i +l+101+1tj ) expf-u(*Z+t2)1. (34)

So (24) can be inferred by (28), (30), (31) and (34). It is similar

to get (25). In order to prove (26), differentiating three times in the

both sides of (27), we have

M3 .1 Cf  T3d*

1w v'pq

where T3 = T + T3 + T1', and

T = p(p4)'3/21 3 1k  4knT; ~ b~ lk a
'(.. keG k meG

4,.
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T;3 2()32 kl J  mtGj MGke ] mcG •

k;j mjkj

TH' a 03 (04,) 3/2 ( 1 ,,,bbe m1.G m

k .e.G k m i meG

# e'.t 2

The estimate of each term is similar to (22), but the term c N'LN e

appears in the right side of (26). The reason is that if C' and C" are small

enough, we obtain by lemma 5 that

T3 .1 CN k ilb3k 1mI < CN LNexp{-u(* +t2)}keG3  meG3

The other estimates are omitted. The lemma 6 is proved.

Lema 7. Under the condition of the Theorem 1, there exists x > 0 such

that
,tlI 1i3ES3eitSn - n(t)ldt < CL

jn n N'

N
where n(t) - E Sn + 3t - t3)e .

Proof. Set

uk = (.e1 '- k+ e k)i k Pk,

vk (pe-iw+qe)iqw; v~k a (p'lkql~ )/Pk k/Pk ,

wk = (.p 2e-iPwk+q2ei wk)Ip k WklPk ,

Bn(P)U V,(N)pnqN'
nn
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From the equality

E eitSn" I 1u1jkMlp l Pkl,t)d*, (35)

we have

(E"e"tS )"' 1 ) N

f-t n  l. I__ i p pq T+T2+T 3  Pk(* t)d* , (36); p- Bn (p) v I-<=  TITzT3

here
IN~1 3

T - kI bkk (37)

T = -31Vpv'- b2Vkbjj (38)

T3= -i(pq912 < bkb jbukujut ,  (39)

II

Take C' and V' small enough to satisfy 1w k1I 1/10 for (*,t)cr1 . In this

case,

Uk = lwkll+2 i(q-p)wk+ek( ], (40)

vk = 1 + i(q-p)w k + 8kEk (41)

Wk = (q-p) + ekI&kI. (42)

Substituting (42) into (37), we obtain that, when (*,t)erI,

TN N
"T1  - k= 1 C I lbkz kl:C l- k)

" C LN(N 1$+ItI). (43)

3
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Further, substituting (40) and (41) into (38), we get

T-32b+3 b 2b & 1iqp
2 b1 +3i Jk I k J Pq (2&k+&j)

+e a (& +& )3! T; + Tie

where

T; 3 ;3jb'bj(N--I +tb) 3t "I bk(1-k -'J k
1 kj N 3  k k

IT21 CI I b kbj kFYjI + CI IN bC
lck#Lj'N kai js1,j~kJ

+ C ( 2 Nk jljkj2J

Using this estimates, we can easily get

IT 2 - 3t~j C LMQ2(JiiI) + C LNItIQ3(I*I.ItI). (44)

provided (*,t)cr.

Substituting (40) into (39), we have

3 ko~t~ k i k it 2r-q k +ek~k).

*(1+ 2AS..21 j +e i i)(1+ 2 /pS22t + t&V

Using an argument similar to above, we get

jT3- t I LQ2(I*I) + C L NltIQ 3(I*IItI), for (*.t)cr,,(5
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When (*,t)er1, from (39) of the paper *s]  there exists e such that fef < C and

N 2 222N e. ,2+t) 3). (,+t2
J1 Pk(*,t) = e +t ) + eLN()I,13*t e). (46)

* Ntiin I3E ~=(P) bk 1 and using above estimates, we get
/,. k=1

N 3
(T  + + T3 )k 1 Pk(*,t) = 3E S3 )e-(2+t +

+ e[L NQ2(I1*) + LNIt1Q 3(I*IIt)e , for (*,t)cr. (47)

When (V,t)cr2U r4, from (19), we have

N N 3 N NJ(T1  + T2  + T ) P u 3 CN=I k I m
k= 1 ka1 m=l ,mok m l<k 'j<N m= ,mk,j

+ C N

+ km IbkbjbLm ,mfk,j,.m
3 

-
C(LN +N +N)N 3exp{.p(2+t2) }.

Noticing that (*,t)cr2 U r4 implies I*1 1 2C, Mpq, we have

f'l: I(3S33~3)'(Zn21_ )I N+(t+tI)N ex{-(*2+t2)}.

:'.. so the estimate (47) is also valid for (,t)r 2 U r4.

When (*,,tr 3, the case is more complicated. Set HN ={1,2 ...,N DN.

It is obvious that 1wk(4 _ 2C' + C"C* for keHN. After fixing C*, we can take

* C' and C" small enough such that luki < CIkf for keHN (refer to (40)).
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Noticing 9ICD bj.j l/C*L N and using (20), we have

IT P3  2 2 2
T1  PIi CII bkwk 11 1C C LNexp{-12(* +t)1

k-l W M=l mjok

NT N b. G I I, I P. I
T2 k'k C k bklvkI jr.JC HN moik

N ~ 2  NCIb k1vkI Ibu. IP 1Pk=l jeDN jok j 'j m=l,m~k,j

C bk m kb~ ~ 12 IjM*i I
k- o c N mo'k j D o

"C L 3(C*lLl QI+1I+Itj) exp{-u(t,2+t2 )

" C L 2(l+ItI+II) exp{..u(* 2+t2)l

By the similar method the following estimate also can be inferred:

T 37 Pk (*t,tl C {Q 2(Iv*J) + N31 tlex{u*+

Note that above estimate is also valid for (1 Ci 3+tt )exp{-I(* 2+t2)

when Iti > C"vrp- b1 , so (47) holds for (*j,t)c-r3. Hence, when jtj < C"/rp- LN's

we have

L 11 ,Xipq [(T1+T2+T) 3i ES(3 t) - 3)e h(* 2+2)l~
23n k(*=1
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By (36) and the equality Atpq Bn (p) = I+O(N'), it holds that

SIi3E(S3e itsn) - nlt)l _ C(LN2+LN tIQl(It)exp{-ut2 1 (48)

* for Itl < CNp LN .

When Itl < C LN , from lemma 1, we get

ltl " Ili3E(S3 eitSn) - (i3E S3+3t-t3)e_ I

< ntl' {IES3(eitSn-l) + ESn3(l-et /2) + (31tl+Itl 3)et
2/2

nnJJJ31+31tj + _t 3< Ql(ltl). (49)

_ E Sn + ItIEISnl + 3Jt1 t Q3 t.(9

With (48) and (49) we obtain

f ItV Ii3ES 3eitSn-*(~d
ItI<CpLN ' I  n  n(t)Idt - { JtI<CLN

i+ -
-. + Iltl -1i3ES 3 eitSn (~d

f CLftIC"v LNI Ii3E IttSn - wn(t) Idt

< CLN"

Up to now the lemma is proved.

Lemma 8. Let I = n-J = (V[]. Under the condition of the theorem 1, the

following relation is valid:
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E{(S~ ~ ~ +*3epi( IE( 3 ep'~)

Proof. We only prove the relations

U{S 3-m Am eitSn(e't~nl-l)1.O, for m =0,1,2,3. (0

From Jensen's inequality, for a > 1, we have Eig~ja nlJ (50

< EfE,* 21c 1Y E EI14 2 10 CE II 1 OL -

so with lemma 2, we get

Using lemma 1 and 2 and H6i1der's inequality, we have

EISA 3-m a M ~ Cn ml/v 3  for m -1,2.

Hence

for m =1,2,3. From this (50) holds for m = 1,2,3.

Now we prove the case of m -0. It is obvious that there exist

e. e9.~1 J < = 1,2 such that

eitanl-l = tA*~ + 2elItA*1II(AU 8.) 2 A *2I(A' B)
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here the definition of A and Bcan be found in (11) and (12). So

we have

ItiV I E(Sneitn(e fll.1)l~ I IE(S ene * n 1  +

+ 2E(IS A 1II(A U Bj) + Iti IE(e An S etn (A5n~)

Using lemmna 1,* 3, 4 and Hijider's inequality and noticing v3 1. ( 1,

we obtain

M (t) <2(EISn1 18 l/6(Et,&lI3)1/3 [P(AJUB8j)]

-*< CN--IV L. (52)

So

J 2t<X~ M(t)dt <C N 3

From lemmna 1, 3, 6 and Hi5der's inequality, for appropriate selected

e and e there exists X such that

r 3
CA 1 l 3 t 10 E nS~3r l 3NIt 3) exf~iN~ 2

fJttI L- Irr=

< C IIttL N Et v &i2i~ri Ii~ 3exN{-JaN tlt x{pN-~~d

f.jX 
=4n ~
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C c uIN'1 3(l+uI3)exp{-tu21du < CN'1 3 .  (53)

Set
nJ = 2n/2], n 1 ) Sn z J Sn j

-- ",J-5+1

AflZ1 = yAM d1<.i k<5 ,jk"

*By the symmetry, we have

1t) -- nI E*(AnlSneitSn) _ C E{I(JAS(II(A5UB3)1 +

+ C IE{ f anl(s n)3 "rI(An Bj)IE()re i tSnIXl....Xj]l1

M M1 1(t) + ,l 12(t), (54)

Where A5 . 85 were defined by (11) and (12). Using an argument similar

to that employed in establishing (52) and (53), we see that for appropriate

* selected c and e , there exists A such that

It I<xL- l  Mll(t~dt < CN'1r 3 ,  (55)

3' 2

M1 (t)dt < C E{I(Anl($n)3 r (l+(in 13+lt 3)}e 'ut2dtf 1 12<X N jt i XL Nl r!O a

"., < CNtl 3 (t )L-lll+2 dt -. CN-1 3 " (56)
3tjA' 33 2

S From (51) to (56), (50) is proved for m - 0, thus the lenma 8 holds.

d

m~*i' .U



26

Ledna 9. Let I - n - [ / [n-]. Under the condition of the theorem 1, we

have t

S3E{(Sn+A e)30itSnlB (t) a {13 E(Sn+A I)3 + 3t - t3le Z
n ni - - n nn

Proof. From lemma 7, we need only to prove

nl E(S m A Sn)E (S Anl me /2, for m = 1,2,3 (57)

But from lemma 1, 3 and H6lder's Inequality, It is obtained that

ItFl1 E S 3-m*m (eitSnet 
2 2

-lrl3-m* mttn I 1[3m:m(.' /)

ItEl EIS3mn (e tSn--)1 + t 12)1

m
.-. 4< < Eln 4 mA*1 + E s 3m I C N

nI n1 IESA 1  V 3

for m 2, 3. From this estimate we see that (57) holds for m = 2, 3. In
n- I -II

order to prove the case of m = 1, taking J a[j] and introducing .Sn , Sn and

Anl as the proof of the lemma 8, we need only to prove
I2

'i].]2-* i tSn  2-*

E(Snanle n )-E(Snnl)e . (58)

" Using the similar method employed in establishing (54)-(56), we know

that there exists x such that

i,
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1 2- * i~ n~ dt-<2-* itSn~ df1<j tjj <XLl1 -t I "1E(S n AMl)et.nd _ 1 t ..LI I JES n, Me Id

_1<JJ, _ iEISnZnlI(A5UBl)I + IES2nietSn i(A n 9q) dt

c N-'3. (59)

But t2-1 2-* )e-TN 3

fl<_t.IXL- 1 tI'IE(Sn in)e"  Idt < C N 1V3 9 (60)

I IIItVI-E SnAnl(eltSne-t/ 2 )Idt

a S (eitSflI + tES2 - et

<_(EISnAn~l+ElSnA nl)dt < C N-V3, (61)

so the relation (58) holds by (59)-(61), and the lemma 9 is proved.
Lemma 10. Suppose that *(t) have continuous third-order derivative ((t

in Iti < T, and *(i)(O) - 0 for j = 0, 1, 2,. Then

1T itl.j 4t(J)(t)Idt < fIt i- l1(3)(t)Idt, for j = 0, 1, 2.
J-T -JT

The proof can be referred to lemma 2 of the paper [3 ].

Lemma 11. Suppose that (2) is valid. Let {Wnl I and (Wn2I, n = 19 2,..., be a

sequences of random variables, Wn a Wn* + Wn2, and {an) be a sequence of real

numbers such that an-li < C/vA. Then, the following conclusions are valid.

' . % .1 . . I - l % ." ......-
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(1). If we have

S1P(Wnl. x)-#(x)f < C NkV 3(I+Ixf) "3  (62);

* for all x and n, and

P(IWn2 l C-xJ c vl ) C N'v 3(1+xl) 3

,4

" for all jxj > 1. Then

IP(Wn-. x) - O(x)l < CNfV3(I+Ixl) 3, for all x and n. (63)

(2). Suppose that v3. - Ci', also (62) and the following hold,

P(lWn2l >. ;11) < C N'v31xl"3

for xi > 1. Then (63) holds.

Proof. Refer to the proof of lemma 1 in the paper 3 ] , and use the

condition "1 < C 1 Nv 3 .

" III. Proof of the Theorem

In order to prove the theorem 1, first we prove the following theorem:
N N 2

Theorem 2. Let b b 0, 1 b - 1 and (2) hold. Then for all n

, and x we have

IP(Sn _x)- O(x)_ C LN(I+fxi)" .

2 E 3.Ovosy
" Proof. Set a* - 1, al 0, 2 - ESn - 1, a3 "ES nObviously, 1*1 CL

are valid for j " 1, 2, 3. Define

A,

-* .,*~*.** ~ ~ ~ ~ ~ ~ %*~:~ *4*%*~.. ~ .%.
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i 3 2.

h nt) - I k(it)ke-t /2/k!, (64)
k-O

gn(t) - E etSn. (65)

Obviously,
Ihn(t) - e-t 2/21._ CLN(t2+It 3le t 2/2

and

Ih(t) - *n(t)I_ CLe(ItI+t 6)et /2

where the definition of *n(t) is found in the lemma 7. With the lemma 3

of [5] and the lemma 7 there exists X > 0 such that

JltL.; It1l1gn(t) - hn(t)Idt < C LN9 (66)

fti lig 3) (t) - h ( 3 t)Idt <C LN (67)

Noticing g(,J)(O) - 0)(0) for J - 0, 1, 2, with lemma 10 and (67),

we get

JIt ILn n h~~tjtc N' for J1 001,2,3. (68)

Define

Gn(x) - P(Sn < x), Hn(x) k 0 cl ( (x). (69)
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St

It is easy to see that Gn X) is non-decreasing, Hn(X) is differential

and has bounded variation On R1 , and G(w) = H (), 1 3Id(GX)-Hn(X))f < -,
n n L-fxj Id( n~x)

IHn(x)ll C(l+1xl) "3 . So Gn and Hn satisfy the conditions of lemma 8 of the

Chapter 6 in [2]. Checking the proof of the lemma again, we see

that this lemma also holds when T > X, here X is an absolute constant.

Set
:; ~3(t) -- 1a 3 (t e td(x3(Gn (X)-H n(x))

then
'6n')' HnlX'' C(l+Ixc)-3{f -

n l JitI<xe1 Itl Ign(t) - hn(t)Idt +

f- Itl.XN1 .tI ' 163(t)Idt + C LN}. 
(70)

From the lemma 7 of the Chapter 6 in t2],, and noticing (66),

(68) and (70), we get

IGn(X) - Hn(X)I < C(+IxI)' 3 {J tIjxLNI Itl'1ign(t) -'hn(t)Idt

3

+ j<LN It!j'41 )(t)" h(J)(t)jdt+ C LN}

<C LN(l+IxI) 3. (71)

But

IHn (x) - o(x)I < C LN(I+Ixl)
"3

n N

so the theorem 2 is obtained from (71).

J,,

.5 --i°. , -. * * *

4• ,G ,,- , ,: ,, ;,4~ %;-%% .. q(,, , ._ *. . *. ,. .. *, .. ,.,. . - .. ' .. .
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In the following we give the proof of the theorem 1.

Proof. First suppose that V 3 > -. By lemma 3, we have

P(IAn _ xl) -CxI3EiAn < Cx!'3.e'3 /2V3

for jxl > 1. Using lema 11 (2) and theorem 1, and noticing Un Sn + AnI

we get

IP(Un_1 x) - O(x)I _ C N- 3(l+jxj)" . (72)

N Now we suppose that v3 <,. write

o s 1, c 1 uO, 2 - E( Sn+An) - 1,a3  E(Sn+Ani)

3 2.
hn(t) I kO k(t)ke fk. (73)

IcMO

gn(t) =E exp~it(Sn+6n)) (74)

and

[1(t) 3 (13E(Sn+Anl) 3 + 3t - t3le-t1/2.

t 9,,ehv h 3)(t)'8n(t). From the
Clearly, h (t)-e" " , and by lemma 9, we have n

n n

proof of the theorem 1 in [5], we have gn(t)e'tg2 . Using lemma 8 and

* lemma 9. we get g (3)(t)-0(t). Hence gn(t)h )t g(3) (t)-h(3)(M and

9 (j(0) g h(O) for J - 0, 1, 2. Similar to the proof of the theorem, we

get that there exists x > 0 such that

I.
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111 ItIIgn(t) h hn(t)ldt < C 'A3

It1-T (j(t h,?)(t)fdt <C for1=,1,.3

Similar to the proof of the theorem 2, we can obtain

IP(Sntn x) - O(x)l _ C N 3(1+ jXf (75)

When lxI > 1, with (9) and (10) we get

P(IA* I cjx(/v ) C N 3/2 Ix'3 E 1&* 3

<C N32 3 CN-9 /(,rWn) 3n 3 < C N- 3 1I~

Hence with (1) of lemma 11 and (75), we have

- IP(Sn+ ~ x) D (X)j C N-,V 3 (1+fxfY-3. (76)

Set

*p.jk OjkI(IjkL5!rn(+IxD), Ojk Ojk -Eojk. J 0 k. ij E (;JkIXj)

Yjk '7jk 'gj~gk'' n n 4.~~ 'Zk A Yk
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then

E Z 2 < cr(l+lxl)v3.

Using Jensen's inequality, we get

E 42 <3{E(,1*2-# *2) 2 + 2E(E[(.-4 2  
2}

2* 2

~. 3{E(#12-*12)2 + 2E(E[(f12-fi2) 1x11),

9 "( * * )2
_ 9 ( -12-12'

_< 9 E*z2 (/Wc<l 2 ctl_<(+Ixl)) _< 9,'E1€1213.

Hence, from lemma 2 and the supposition v3 
<  i , i.e. n- \ 3 <C, we have

E(n-An) < C n'6E( I Z k)4  Cn 3EZ4  + Cn 2 (EZ 2 )2
n n1<j<k<n Jk 21

_< Cn 3.cy('+IxI)v 3 + Cn 
2(gn' v3)2

_ Cn5 /2V3(1+Ixl). (77)

On the other hand, if we set Wjk = Yjk - Yjk' then it is easy to

see that

E(A A 2 <c n-1  22
nA n - EW 12 < *-.9E# 21(,2 1>rn('+l))

< C n-3/2V3(l+jxj)'. (78)

.p p. - . . '.,e* . " _' v1 ,s* . ,d . q_l.r'..-F r " -.*. .. , e 
I r w ... , , - .2 ..- , - o % °
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Thus, from (77) and (78), we have

Pq n-(Sn+I& *)I 2 lxllrn

. P(lan-a I > lxl/2,Ai) + P(lAn-Anl >IxI/2A

2 n 2 2X4 2 4
< 4nx" E(A - n) + 16 na

| C n'h%3(l+IxD)"3,  (79)

for all Ixi > 1. Further, with (1) of lemma (11) and (76) and (79), we

get

IP(Un < x) - o(x) 1. C n3v3ll+l)'. (80)

R U
Noticing aN a using lemma 11 (1), we get

-P( Un< x) - O(x)l < C n-v3 (l+lxl , for all x and n,

i.e. (3) holds for ag = 1. So the theorem 1 is also valid in general case.

\'°* . * . . * * . . . . . . . . ' '

-°. ' . * **.*' . * i *~ * 1 ~ .. . . . . . . . . . . . . . . *.'l% * - - - - ~ --
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